什么是超几何分布

时间:2025-03-05 19:37:15 娱乐杂谈

超几何分布是统计学上一种 离散概率分布,它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)的情况。

超几何分布的参数是N(总体大小)、n(样本大小)和M(指定种类的物件数量),记作X~H(N,n,M)。

超几何分布的概率质量函数(PMF)为:

\[ P(X=k) = \frac{C(M, k) \cdot C(N-M, n-k)}{C(N, n)} \]

其中,C(a, b)表示从a个物件中选取b个的组合数。

超几何分布适用于总体大小固定、样本大小固定、每次抽取的样本不重复、关注的是样本中特定类型元素数量的情况。

超几何分布的应用场景包括:

质量检查:

如食品、疫苗等质量检查。

四格表的确切概率计算:

在统计表中查找X=0的概率。

总体阳性数的估计:

当总体含量N已知时,如果抽取一个含量为n(足够大)的样本中有X例阳性,则总体阳性数M的估计量为M的方差估计量为。

总体含量的估计

需要注意的是,超几何分布与二项分布不同,二项分布是独立重复试验中成功次数的概率分布,而超几何分布是不放回抽样的情况。